New evidences for H2-rich gas seepages in New-Caledonia

E. Deville², G. Paita^{1,2}, , I. Moretti^{1,3}, O. Sissman², J. Jeanpert⁴

Keywords: New Caledonia, ophiolite, gas composition, isotopes, hydrogen, carbonates

The results of a recent study complete previous works made on natural hydrogen in the ophiolitic nappes of New-Caledonia. Gas seepages are present in various places and they are associated to the deposition of carbonate deposits. The gases are H₂-N₂-CH₄ mixtures seeping into ultrabasic spring water (pH ~ 10-11; temperatures between 30 and 40°C). This type of gases shows H₂ contents between 12 and 34%, N₂ between 50 and 80%, and CH₄ between 9 and 18%. Close to the sole thrust of the ophiolites, the H₂ contents decease and the N₂ contents increase. The isotopic values of H₂ and CH₄ correspond to classical values in high pH springs in ophiolitic massifs. The origin proposed to explain these emanations of H₂ is a process of oxidation of Fe(II) present in the ophiolitic rocks and reduction of the water present in the fractures system of the ophiolites. The methane, due to high C1/C2 ratios (between 5000 and 13000), is interpreted as the result of methanogenesis by reaction between H₂ and inorganic carbon present in subsurface. δ^{13} C of CH₄ is a little higher compared to classical microbial gas and it is in accordance with those obtained in natural H₂-rich gas seepages in the Oman ophiolite. H₂ measurements using detectors made in lateritic soils (perforations ~ 1m) showed low levels of H₂ concentration. An autoclave experiment was made, in which 5 g of laterites were mixed with 150 ml of neutral water, with argon and hydrogen at constant pressure and temperature (temperature of 80°C). In this experiment, the laterite powder was kept in contact with water and argon by a stirrer. The results of this experiment suggest a mineral consumption of H₂ which, in addition to a probable microbial consumption of H₂, could also explain the absence of H₂ in the lateritic shallow layers, even though H₂ is probably regionally generated at depth.

¹ ENGIE, 1 Place Samuel de Champlain, Paris La Défense, France

² IFP Energies nouvelles, 92852 Rueil-M. Cedex, France

³ UPPA - E2S, France

⁴ Service Géologique de Nouvelle-Calédonie, DIMENC, 1 ter rue Unger, BP M2, 98849 Nouméa